skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chan, Pak-Yeung"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In 1996, H.-D. Cao constructed a U(n)-invariant steady gradient Kähler-Ricci soliton on Cn and asked whether every steady gradient Kähler-Ricci soliton of positive curvature on Cn is necessarily U(n)-invariant (and hence unique up to scaling). Recently, Apostolov-Cifarelli answered this question in the negative for n=2. Here, we construct a family of U(1)×U(n−1)-invariant, but not U(n)-invariant, complete steady gradient Kähler-Ricci solitons with strictly positive curvature operator on real (1,1)-forms (in particular, with strictly positive sectional curvature) on Cn for n≥3, thereby answering Cao's question in the negative for n≥3. This family of steady Ricci solitons interpolates between Cao's U(n)-invariant steady Kähler-Ricci soliton and the product of the cigar soliton and Cao's U(n−1)-invariant steady Kähler-Ricci soliton. This provides the Kähler analog of the Riemannian flying wings construction of Lai. In the process of the proof, we also demonstrate that the almost diameter rigidity of Pn endowed with the Fubini-Study metric does not hold even if the curvature operator is bounded below by 2 on real (1,1)-forms. 
    more » « less